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a b s t r a c t

Structures with isotropic bladed rotors can be modally analyzed by eigenvalue analysis

of time-invariant Coleman transformed equations of motion related to the inertial frame

or by Floquet analysis of the periodic equations of motion. The Coleman transformation

is here shown to be a special case of the Lyapunov–Floquet (L–F) transformation which

transforms system equations of structures with anisotropic bladed rotors into a time-

invariant system using the transition matrix and Floquet eigenvectors as a basis. The L–F

transformation is not unique, whereby eigensolutions of the time-invariant system are

not directly related to the modal frequencies and mode shapes observed in the inertial

frame. This modal frequency indeterminacy is resolved by requiring the periodic mode

shapes from the L–F approach to be as similar as possible to the mode shapes from the

Coleman approach. For an anisotropic rotor the Floquet analysis yields a periodic mode

shape that contains harmonics of integer multiples of the rotor speed for inertial state

variables. These harmonic components show up as resonance frequencies on the sides of

the corresponding modal frequency in a computed frequency response function of a

simple three-bladed turbine with an anisotropic rotor.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Coleman and Lyapunov–Floquet (L–F) transformations can be used to obtain time-invariant system equations for
modal and stability analysis of structures with bladed rotors, e.g. wind turbines and helicopters. This paper explores a
similarity of these transformations and uses the physical basis of the Coleman transformation to resolve the indeterminacy
of the modal frequencies in Floquet analysis due to the non-uniqueness of the L–F transformation.

Coleman [1] introduces a transformation of the coordinates of bladed rotors into multi-blade coordinates describing the
rotor motion in the inertial frame of reference. The periodic coefficients can thereby be eliminated in the system equations
for isotropic rotors, where the blades are identical and symmetrically mounted. Feingold [2] extends the work by Coleman
to show that the periodic coefficients can also be eliminated in the equations of inplane motion for two-bladed rotors if the
rotor support is symmetric. Coleman and Feingold [3] show that for two-bladed rotors with an asymmetric support, the
Coleman transformation yields system equations containing periodic terms that have a frequency of two times the rotor
speed. They use Floquet theory [4] to show that the solution to a linear periodic system can be written as a set of
exponential functions containing the characteristic exponents (each representing a frequency and damping) multiplied by
a corresponding set of periodic functions that contain harmonics with integer multiples of the system frequency. Any
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periodic function can be represented by a Fourier series, which is used in Hill’s method to derive the characteristic
exponents from Hill’s determinant (see, e.g. [5–7]) as Coleman and Feingold do in their stability analysis of two-bladed
rotors.

The development of digital numerical analysis allows direct application of Floquet theory by computation of the
transition matrix from the time integration of the system equations. The transition matrix gives the monodromy matrix

whose eigenvalues are the Floquet multipliers that determine the characteristic exponents with non-unique frequencies.
Early Floquet analyses are performed on helicopters by Lowis [8] using a rectangular ripple method and Peters and
Hohenemser [9] using a predictor–corrector integration scheme. Attempts to reduce the immense computational effort
required by Floquet analysis on larger systems are done by Friedmann et al. [10] who develop an efficient numerical
scheme to obtain the transition matrix from a single integration, and by Sinha and Pandiyan [11] who approximate the
transition matrix based on an expansion of the system matrix in Chebyshev polynomials. Peters [12] shows with fast

Floquet theory that the transition matrix computed until 1=B of the system period for an isotropic rotor with B blades can be
used to generate the transition matrix for the full period. Bauchau and Nikishkov [13] use elements of the Arnoldi
eigenvalue algorithm to perform implicit Floquet analysis yielding the most important eigensolutions from a limited number
of system matrix integrations. Concepts of system identification from experimental signal analysis are applied by Quaranta
et al. [14] to project the state variables of a large multi-body dynamical system by proper orthogonal decomposition into a
smaller subspace before applying Floquet analysis. Bauchau and Wang [15] use a similar approach, partial Floquet analysis,
to approximate the monodromy matrix from an incomplete transition matrix.

The modal frequencies and damping of the vibration modes of the periodic system can be determined from the Floquet
multipliers. The infinity of solution branches to the complex logarithm yields frequencies given by a principal value plus an
integer multiple of the system frequency. The traditional approach for resolving this frequency indeterminacy is based on
Fourier analysis of the set of periodic functions in the Floquet solution [16,17], which are herein referred to as the periodic

mode shapes. This method is contained in several different Floquet approaches [15,18,19]. Nagabhushanam and Gaonkar
[20] suggest an automatic modal identification method, where the integer factor of the frequency indeterminacy is
determined by using that the ratio of the velocity and position parts of the dominating degree of freedom in the Floquet
eigenvectors is an estimate of the modal frequency. Peters and Hohenemser [9] increase the magnitude of the system
periodicity in small increments starting from zero, where the frequencies are unique, until the desired value, and thus
obtain the modal frequencies by continuation.

In this paper, the traditional method for resolving the frequency indeterminacy is substantiated by showing a similarity
between the modal dynamics of an isotropic rotor obtained by eigenvalue analysis of the Coleman transformed system
equations and the modal dynamics obtained by Floquet analysis. The comparison is based on Lyapunov’s reducibility

theorem [21] stating that the periodic Lyapunov–Floquet (L–F) transformation eliminates the periodic coefficients in the
system equations. The L–F transformation is not unique, because it depends on the non-unique characteristic exponents.
The choice of integer factors on the rotor speed added to the characteristic exponents can be considered as a choice of
reference frame into which the state variables are L–F transformed, and in which the frequencies are then measured. Modal
frequencies are herein defined to be measured in the inertial frame, whereby they can be directly compared to the modal
frequencies obtained from the eigenvalues of the Coleman transformed system equations. The inertial state variables in the
periodic mode shape obtained from the Coleman transformed equations are constant; therefore the modal frequencies are
chosen such that the harmonic components of the inertial state variables in the periodic mode shape become as constant as
possible. In the comparison of the two approaches for an isotropic rotor, the same results are obtained. This frequency
identification approach in Floquet analysis is, however, applicable to a system with anisotropic rotor and support.

The paper is arranged as follows: Section 2 contains the theory of modal analysis using the Coleman transformation and
using Floquet analysis. The similarity of the two approaches is shown and used as a basis for resolving the frequency
indeterminacy. Section 3 contains a numerical example that compares the two approaches for an isotropic rotor and uses
Floquet analysis for an anisotropic rotor. Section 4 contains the conclusions.

2. Modal analysis of structures with bladed rotors

The linear equations of motion for small vibrations of a structure with a bladed rotor operating at constant mean rotor
speed with small overlaid variations can be written as a set of first-order equations:

_x ¼ AðtÞx; Aðt þ TÞ ¼ AðtÞ (1)

where ð_Þ denotes the time derivative, A is the periodic system matrix, T ¼ 2p=O is the period corresponding to the mean
rotor speed O, and x is the state vector for a rotor with B blades:

x ¼ fx1;1 � � � x1;Nb
x2;1 � � � x2;Nb

� � � xB;1 � � � xB;Nb
xs;1 � � � xs;Ns

gT (2)

where an integer as the first index on x denotes the blade number and ‘‘s’’ as the first index denotes inertial state variables of
the rotor support. The total number of state variables for a B-bladed rotor system is N ¼ BNb þ Ns, where Nb is the number
of rotor state variables in the rotating frame for a single blade and Ns is the number of inertial state variables of the rotor
support. It is assumed that all blades have identical sets of state variables. Note that the state variables for an
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aeroservoelastic model of a wind turbine or helicopter may consist of generalized coordinates and velocities of structural
motion, state variables of the unsteady aerodynamic model, and state variables of the controller.

2.1. Coleman transformation approach

The Coleman transformation for a rotor with B blades is [12,16]

x ¼ BðtÞzB

BðtÞ ¼

INb
INb

cosc1 INb
sinc1 � � � INb

cos B̃c1 INb
sin B̃c1 �INb

0

INb
INb

cosc2 INb
sinc2 � � � INb

cos B̃c2 INb
sin B̃c2 INb

0

INb
INb

cosc3 INb
sinc3 � � � INb

cos B̃c3 INb
sin B̃c3 �INb

0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

INb
INb

coscB INb
sincB � � � INb

cos B̃cB INb
sin B̃cB ð�INb

ÞB 0

0 0 0 � � � 0 0 0 INs

2
6666666666664

3
7777777777775

(3)

where B̃ ¼ ðB� 1Þ=2 for B odd and B̃ ¼ ðB� 2Þ=2 for B even, cj ¼ Ot þ 2pðj� 1Þ=B is the mean azimuth angle to blade
number j ¼ 1;2; . . . ;B, and INb

and INs
are identity matrices of sizes Nb and Ns. The vector zB contains the BNb state

variables in multi-blade coordinates and Ns inertial state variables as

zB ¼ fa0;1 � � � a0;Nb
a1;1 � � � a1;Nb

b1;1 � � � b1;Nb
� � � aB̃;1 � � � aB̃;Nb

bB̃;1 � � � bB̃;Nb
bB=2;1 � � � bB=2;Nb

xs;1 � � � xs;Ns
gT (4)

and describes the rotor motion in the inertial frame. The second last column block in B and coordinates bB=2;1 to bB=2;Nb
occur only for B even. Details on how multi-blade coordinates describe the motion of a three-bladed wind turbine rotor in
the inertial frame are discussed in [22,23].

Insertion of (3) into (1) shows that the Coleman transformed system equation becomes

_zB ¼ ABzB (5)

where

AB ¼ B�1ðtÞAðtÞBðtÞ � B�1ðtÞ _BðtÞ (6)

The transformed system matrix AB will be time-invariant if the rotor is isotropic, i.e. it has three or more blades with equal
properties and has symmetric inter-blade couplings such that the coupling to the support depends only on the azimuth
angle and not the blade number, as shown in Appendix A. This important feature of the Coleman transformation enables
the use of traditional eigenvalue analysis for the modal decomposition of the dynamics of these particular rotors.

2.1.1. Modal decomposition of transient solution

A transient solution of the time-invariant Coleman transformed system equation (5) for an isotropic rotor with a
constant system matrix AB is

zB ¼ eABtzBð0Þ (7)

where zBð0Þ ¼ B�1ð0Þxð0Þ are the inverse transformed initial conditions (i.e. the disturbance of the structure away from its
operating point). The Coleman transformed system matrix can be written in terms of its Jordan form as AB ¼ VBKBV�1

B
whereby the transient solution (7) becomes

zB ¼ VB eKBtV�1
B zBð0Þ (8)

If the eigenvectors vB;k of AB are all linearly independent, KB is a diagonal matrix containing the eigenvalues lB;k of AB, and
the eigenvectors vB;k form the columns of VB (see [24] for the case of repeated eigenvalues with linearly dependent
eigenvectors).

The transient solution (8) can be transformed into the original coordinates by (3) as

x ¼ UBðtÞ e
KBtqBð0Þ (9)

where

qBð0Þ ¼ V�1
B B�1ð0Þxð0Þ (10)

is a constant vector representing the modal content of the initial conditions xð0Þ, and

UBðtÞ ¼ BðtÞVB (11)
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is a periodic mode shape matrix. This modal interpretation becomes clearer if the Jordan form KB is diagonal, whereby (9)
can be decomposed as

x ¼
XN
k¼1

uB;kðtÞ e
lB;ktqB;kð0Þ (12)

where uB;kðtÞ ¼ BðtÞvB;k is a periodic mode shape of mode number k in the original coordinates. It can be shown by
expanding (12) for state variable number i on blade number j that the rotor state variables can contain B different harmonic
components (see [23] for details on a three-bladed rotor) written as

xik ¼ esB;kt A0;ik cosðoB;kt þj0;ikÞ þ
X̃B
n¼1

ABWn;ik cos ðoB;k þ nOÞt þ
2pn

B
ðj� 1Þ þfBWn;ik

� ��0
@

þ AFWn;ik cos ðoB;k � nOÞt �
2pn

B
ðj� 1Þ þfFWn;ik

� ��
þ AB=2;ik cosðoB;kt þ fB=2;ikÞ

1
AqB;kð0Þ (13)

where sB;k and oB;k are the modal damping and frequency, respectively, given by the eigenvalue lB;k ¼ sB;k þ ioB;k with
i ¼

ffiffiffiffiffiffiffi
�1
p

. The amplitudes are determined from the components of the eigenvector vB;k in multi-blade coordinates (4) as
A0;ik ¼ ja0;ikj, AB=2;ik ¼ jbB=2;ikj (for B even only) and

ABWn;ik ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðan;ikÞ þ Imðbn;ikÞÞ

2 þ ðReðbn;ikÞ � Imðan;ikÞÞ
2

q
AFWn;ik ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðan;ikÞ � Imðbn;ikÞÞ

2 þ ðReðbn;ikÞ þ Imðan;ikÞÞ
2

q
(14)

where an;ik and bn;ik are the cosine and sine components of vB;k, respectively. The constant phases f0;ik, fBWn;ik, fFWn;ik,
and fB=2;ik in (13) are also given by the eigenvector [23]. The amplitudes with subscript BW denote the backward whirling
components, where for n ¼ 1 the reaction force due to this rotor motion rotates against the direction of the rotor.
Conversely, the FW amplitudes represent the forward whirling components, where for n ¼ 1 the reaction force rotates in
the direction of rotor rotation. For n41 the reaction forces cancel out and these components are called reactionless.

2.2. Lyapunov–Floquet transformation approach

Floquet theory enables the solution of the linear equation system (1) directly without elimination of the periodic
coefficients. Any transient solution at any time t can be formed from N linearly independent solutions of (1) over a single
period t 2 ½0; T� [6]. These solutions ukðtÞ are collected in the columns of an N � N matrix called the fundamental matrix of
the system:

uðtÞ ¼ ½u1ðtÞ u2ðtÞ � � � uNðtÞ�; _uðtÞ ¼ AðtÞuðtÞ (15)

The solutions may be found by numerical solution of (1) with N linearly independent initial conditions collected as
columns in the matrix uð0Þ. Lyapunov’s reducibility theorem [25] states that there exists a transformation of the original
coordinates x that renders the periodic system (1) time-invariant. This Lyapunov–Floquet transformation can be defined as
[26,11,27]

x ¼ LðtÞz; LðtÞ ¼ uðtÞ e�Rtu�1ð0ÞLð0Þ (16)

where R is a constant non-singular matrix.
To show that the Lyapunov–Floquet transformation (16) eliminates the periodic terms of the system equations, it is

substituted into (1) leading to

_z ¼ L�1ðtÞðAðtÞLðtÞ � _LðtÞÞz (17)

which by differentiation of L and use of _uðtÞ ¼ AðtÞuðtÞ can be rewritten as

_z ¼ ALz (18)

where

AL ¼ L�1ð0Þuð0ÞRu�1ð0ÞLð0Þ (19)

is the time-invariant Lyapunov–Floquet transformed system matrix. Note that it is given by the constant matrix R, and the
choices of initial conditions for the fundamental matrix uð0Þ and transformation matrix Lð0Þ.

If the constant matrix R is defined in terms of the monodromy matrix

C � u�1ðtÞuðt þ TÞ (20)

as

C ¼ eRT (21)
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then the Lyapunov–Floquet transformation L can be shown to be periodic with period T by combining (16), (20), (21), and
R ¼ VKV�1.

The monodromy matrix can be written in terms of its Jordan form C ¼ PJP�1 where J contains the eigenvalues rk of C in
the diagonal. The eigenvalues are named characteristic or Floquet multipliers. Eq. (21) shows that R is determined as the
matrix logarithm

R ¼
1

T
lnðCÞ ¼

1

T
P lnðJÞP�1 (22)

which exists because C is non-singular [28]; however, R may not be unique. There can be two causes of non-uniqueness of
the matrix logarithm [29]: first, the similarity transformation matrix V of the Jordan decomposition R ¼ VKV�1 can have
an infinity of solutions if the Jordan form J of C is non-diagonal. Second, even if J is diagonal, the complex scalar logarithm is
non-unique, which is the case relevant for practical applications.

2.2.1. Modal decomposition of transient solution

A transient solution of the time-invariant Lyapunov–Floquet transformed system Eq. (18) is

z ¼ eALtzð0Þ (23)

where zð0Þ ¼ L�1ð0Þxð0Þ are the inverse transformed initial conditions. The transformed system matrix (19) can be Jordan
decomposed as

AL ¼ VLKV�1
L (24)

where VL ¼ L�1ð0Þuð0ÞV and the Jordan form of AL is K, because AL is a similarity transform of R (19). The transient
solution (23) then becomes

z ¼ VL eKtV�1
L zð0Þ (25)

Note the similarity between this expression and (8). The transient solution (25) can be modally decomposed and written in
the original coordinates using (16) as

x ¼ UðtÞ eKtqð0Þ (26)

where the initial modal coordinates are

qð0Þ ¼ V�1
L L�1ð0Þxð0Þ ¼ V�1u�1ð0Þxð0Þ (27)

and the periodic mode shape matrix is

UðtÞ ¼ LðtÞVL ¼ LðtÞL�1ð0Þuð0ÞV (28)

The periodicity of U follows from the periodicity of L.
The matrix R defined by (21) from the monodromy matrix C is still undetermined due to the indeterminacy of the

matrix logarithm in (22). However, when J (the Jordan form of C) is diagonal, then K (the Jordan form of R) will also be
diagonal with the elements

lk ¼
1

T
lnðrkÞ (29)

which are called the characteristic exponents of the monodromy matrix C, and the similarity transformation matrix P that
brings C to its Jordan form J will also bring R to its Jordan form K, i.e. V ¼ P. Furthermore, the diagonal property of K shows
that the modal decomposition (26) can be written as

x ¼
XN
k¼1

ukðtÞ e
lktqkð0Þ (30)

where ukðtÞ ¼ LðtÞL�1ð0Þuð0Þvk is a periodic mode shape of mode number k in the original coordinates and qkð0Þ is its
modal content in the initial condition.

The characteristic exponents (29) are given by the complex logarithm

lk ¼ sk þ iok ¼
1

T
lnðjrkjÞ þ i

1

T
ðargðrkÞ þ jk2pÞ; jk 2 Z (31)

where sk and ok are the real and imaginary parts of lk, respectively. The integers jk in the imaginary parts are
undetermined for each mode, i.e. the modal frequencies ok are not determined uniquely. A physical explanation to this
indeterminacy is that frequencies depend on the observer’s frame of reference, which is defined by a Lyapunov–Floquet
transformation that is non-unique due to its dependency on R (16). The frequency indeterminacy is now resolved by
defining modal frequencies as those frequencies observed in frequency responses measured in the inertial frame of reference.
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2.2.2. Resolving the indeterminacy of the modal frequencies

Principal Floquet exponents lp;k ¼ sk þ iop;k are defined by the modal damping sk and principal frequencies op;k
which are given by

sk ¼
1

T
lnðjrkjÞ

op;k ¼
1

T
argðrkÞ; op;k 2 �

1

2
O;

1

2
O

� �
(32)

where argðrkÞ 2� � p;p� is implied. The complex logarithm (31) shows that the modal frequency ok is undetermined to
within an integer multiple of the rotor speed:

ok ¼ op;k þ jkO (33)

where the indeterminacy for mode number k is denoted by the integer jk. The transient response (30) to a pure excitation of
mode k (obtainable by setting qkð0Þ ¼ 1 and all other initial modal components equal zero) can thereby be written as

xkðtÞ ¼ ukðtÞ e
ðlp;kþijkOÞt (34)

where the periodic mode shape is given by (16) and (28) as

ukðtÞ ¼ LðtÞL�1ð0Þuð0Þvk e�ðlp;kþijkOÞt

¼ uðtÞvk e�ðlp;kþijkOÞt ¼ up;kðtÞ e
�ijkOt (35)

where up;kðtÞ ¼ uðtÞvk e�lp;kt is the principal periodic mode shape. Both the periodic mode shape uk and the exponential
term in the solution (34) depend on the chosen integers jk. As the exponent has different signs in (34) and (35), the
contributions from jk cancel, and the same transient solution is obtained independent of the values of jk. Hence, a modal
frequency of mode number k can be defined freely within an integer multiple of O, a choice that also determines the
observer’s frame of reference. The observer of the modal frequencies (33) is placed in the inertial frame of reference, which
makes the modal frequencies similar to those obtained by the Coleman transformation approach, where the periodic mode
shapes are constant for the non-transformed inertial state variables. The objective of the suggested approach is therefore to
make the inertial state variables in the periodic mode shapes constant, or as constant as possible.

The Fourier expansion of the principal periodic mode shape up;kðtÞ contains only harmonics of an integer multiple of O
because up;k is T-periodic, and it can be expressed for state variable i as

up;ikðtÞ ¼
X1

j¼�1

Up;j;ik ei2pjt=T ¼
X1

j¼�1

Up;j;ik eijOt (36)

where Up;j;ik are the Fourier coefficients.1 Using (35) and (36), the periodic mode shape corresponding to the modal
frequency (33) can be written as

uikðtÞ ¼
X1

j¼�1

Up;j;ik eiðj�jkÞOt (37)

By selecting the undetermined integer jk for mode k as the index of the largest Fourier coefficient

jk ¼ fjk 2 ZjUp;jk;ik
XUp;j;ik 8j 2 Zg (38)

the largest harmonic component in the periodic mode shape (37) is removed. Note the index i must correspond to a state
variable in the inertial frame. In the case of an isotropic rotor, Up;j;ik is non-zero only for one jk, and uik is constant for
inertial state variables. If the rotor has any anisotropy, internally or externally, then Up;j;ik will have several non-zero
components for inertial state variables, but the periodic mode shape uikðtÞ is made as constant as possible using (38) to
select jk.

Johnson [16, p. 374] describes the above method in the following way: ‘‘One way to mechanize this choice of frequencies
is to require that the mean value of the eigenvector have the largest magnitude; then the harmonic of largest magnitude in
the eigenvector corresponding to the principal value of the eigenvalue gives the frequency n2p=T ’’, where ‘‘eigenvector’’
refers to the periodic mode shape and n is jk. The periodic mode shape has the largest mean value in time, when it is not
oscillating. Johnson’s statement is, however, in this context only valid when considering the inertial state variables, because
the rotor state variable harmonics can be non-zero at other frequencies than the harmonics of the inertial state variables.

2.2.3. Similarity of Coleman and Lyapunov–Floquet transformations

For an isotropic rotor, the Lyapunov–Floquet transformed solution (23) must be identical to the Coleman transformed
solution (7) when written in the original coordinates. Using the Jordan decomposed forms of the time-invariant system
1 The frequency resolution of the Fourier series (36) must be exactly O implying that the Fast Fourier Transforms of the principal periodic mode

shapes are computed from fundamental solutions obtained in 2n time steps over the period T, where n is an integer.
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matrices, this equality of the solutions becomes

BðtÞVB eKBtðBð0ÞVBÞ
�1xð0Þ ¼ LðtÞVL eKBtðLð0ÞVLÞ

�1xð0Þ (39)

where the Jordan forms K and KB are identical for the two approaches, because the modal frequencies in the
Lyapunov–Floquet transformed solution are resolved in the inertial frame as in the Coleman transformation solution.

The initial values of the Lyapunov–Floquet transformation (16) Lð0Þ can be chosen arbitrarily. Choosing Lð0Þ ¼ Bð0Þ, the
two similarity transformation matrices of the Jordan decomposed forms must be equal, VB ¼ VL, to satisfy (39) at t ¼ 0,
whereby also the transformations become equal, LðtÞ ¼ BðtÞ, for all t 2 R.

Hence, the Coleman and Lyapunov–Floquet transformations are identical for an isotropic rotor when the
Lyapunov–Floquet system matrix R is corrected for the initial conditions used in the fundamental solution (19), and
when the Coleman transformation is used as initial condition for the Lyapunov–Floquet transformation. Thus, the Coleman
transformation can be viewed as a special case of the Lyapunov–Floquet transformation which also renders systems with
anisotropic rotors time-invariant.
3. Application to a wind turbine with hinged blades

A structural model of a wind turbine with a minimum degrees of freedom able to represent some of its fundamental
structural dynamics is considered. Fig. 1 illustrates the turbine with three rigid flap-hinged blades and a rigid nacelle that
can tilt and yaw on a rigid tower. The state vector is

x ¼ fy1;
_y1; y2;

_y2; y3;
_y3; yx; _yx;yz; _yzg

T (40)

where yj is the flap-hinge angle of blade j, and yx and yz are the tilt and yaw angles of the nacelle, respectively.
The rotor is assumed to be mass balanced and gravity is neglected, whereby the model can be linearized around the

steady-state equilibrium with constant rotor speed and zero deflection angles. In case of gravity, or a mass unbalance, this
linearization is also valid if the deflections in the periodic equilibrium are not too large. The system equations are written in
first-order form (1) with a periodic system matrix (55) in Appendix A. Dissipation is included in the model by viscous
damping forces.

To investigate anisotropy, different values for the blade stiffnesses G1, G2, and G3 can be applied. This type of anisotropy
is chosen to avoid changing the steady-state equilibrium. Table 1 shows the model parameters chosen to represent a
generic multi-MW turbine.
Fig. 1. A wind turbine with flapwise hinged rigid blades and a rigid nacelle able to tilt and yaw yielding five rotational degrees of freedom: y1, y2, y3, yx ,

and yz.

Table 1
Model parameters for a multi-MW generic wind turbine.

Blade moment of inertia about root Jb 4� 106 kg m2

Nacelle/tower tilt moment of inertia Jx 8� 106 kg m2

Nacelle/tower yaw moment of inertia Jz 6� 106 kg m2

Blade stiffness Gb 8� 107 N m

Nacelle/tower tilt stiffness Gx 7� 108 N m

Nacelle/tower yaw stiffness Gz 4� 108 N m

Blade damping cb 1� 105 kg m2 s�1

Nacelle/tower tilt damping cx 1� 106 kg m2 s�1

Nacelle/tower yaw damping cz 8� 105 kg m2 s�1

Blade mass mb 12� 103 kg

Distance from tower top to hub Ls 4 m
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3.1. Isotropic rotor

The case of an isotropic rotor, G1 ¼ G2 ¼ G3 ¼ Gb, is studied to show the similarity of the Coleman and
Lyapunov–Floquet transformation approaches.
3.1.1. Coleman transformation approach

Eigenvalue analysis of the time-invariant system matrix (56) in Appendix A yields modal frequencies, damping, and
eigenvectors in multi-blade coordinates. The state variables based on these coordinates are

zB ¼ fa0; ã0; a1; ã1; b1; b̃1;yx; _yx; yz; _yzg
T (41)
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where ã0, ã1, and b̃1 are linear combinations of multi-blade positions and velocities (cf. Eq. (46) in Appendix A). The
azimuth angle cj for blade j is defined as zero for the blade pointing downwards (see Fig. 1), which means that the
coordinate a1 in (3) is rotor tilt motion, b1 is yaw motion, and a0 is the symmetric flap of the rotor.
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Fig. 4. Amplitudes (log. scale) and phases of harmonic components Up;j;ik (36) in the principal periodic mode shape for the isotropic rotor at

O ¼ 1:4 rad=s. The bottom scale shows the frequencies in the response measured in the inertial system as ðj� jkÞOþok ¼ jOþop;k using (35). (a) First

BW mode; (b) first FW mode; (c) symmetric mode; (d) second yaw mode; and (e) second tilt mode.
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Fig. 2 shows the normalized modal amplitudes as function of rotor speed, where A0;k, Aa1;k
, Ab1;k

, Ax;k, and Ay;k are
absolute values of the eigenvector components and ABW;k and AFW;k are obtained from (14) omitting subscripts n ¼ i ¼ 1.
The tilt Aa1;k

and yaw Ab1;k
components represent rotor motion in the inertial frame, mutually exclusive to the whirling

components ABW;k and AFW;k that represent rotor motion in the rotating frame. The first yaw mode (lowest frequency at
standstill) develops into a mainly backward whirling mode for increasing rotor speed, whereas the first tilt mode develops
into a mainly forward whirling mode. The second yaw and tilt modes with similar amounts of forward and backward
whirling at all rotor speeds remain yaw and tilt modes. The symmetric mode has only the A0;3 component and does not
couple to the nacelle in this model with an isotropic rotor.

Fig. 3(a) shows the modal frequencies as function of rotor speed in a Campbell diagram. The frequency of the symmetric
mode increases with the speed due to centrifugal stiffening, which derives from terms proportional to O2 in the stiffness
matrix (54c). The frequencies of the two lowest asymmetric modes split as they develop into backward and forward
whirling modes, while the modal frequencies of the two highest asymmetric modes remain constant due to the small
whirling amplitudes in these modes. Fig. 3(b) shows the damping ratios, which vary mainly due to the change in frequency.

3.1.2. Lyapunov–Floquet transformation approach

The periodic system equations (1) with (55) are integrated 10 times for linearly independent initial conditions uð0Þ ¼ I
to obtain the fundamental solution matrix (15) and monodromy matrix (20). Eigenvalue analysis of the monodromy matrix
yields 10 distinct characteristic multipliers with linearly independent eigenvectors, whereby the system can be modally
decomposed. The characteristic exponents (29) provide the principal frequencies op;k in the interval � �O=2;O=2� and
damping sk using (32). The principal periodic mode shapes up;k are computed from (35) with jk ¼ 0.

Fig. 4(a) shows the amplitudes and phases of the O-harmonic components in the principal periodic mode shape of the
first BW mode at the rated rotor speed O ¼ 1:4 rad=s. The modal frequency is determined from (38) using the dominating
inertial component yz as op;1 þ 2O � 0:45 Hz. The modal frequency of the first FW mode shape is similarly determined as
op;2 þ 4O � 0:86 Hz from Fig. 4(b).

The direction of the rotor whirl can be determined from the phases of the individual blades. If the difference in phase
between all blades is less than p=3, the harmonic is termed symmetric (S); otherwise it is termed backward whirling (BW)
or forward whirling (FW) depending on the order of the phases of the individual blades (cf. Eq. (13)). The dominating rotor
state variable harmonics in Figs. 4(a) and (b) thereby identify the first BW and first FW modes, respectively.

The phases in Fig. 4(c) show that the motion of the rotor state variables is symmetric, which means that they oscillate
with the modal frequency. Thus, in the absence of any motion of the inertial state variables, the modal frequency is
determined from the rotor component y1 as op;3 þ 3O � 0:75 Hz.

The mode in Fig. 4(d) is termed the second yaw mode because yz is the most dominating inertial component, and
because the BW and FW components are similar in magnitude, whereby the mode cannot be characterized as whirling. The
modal frequency is determined from the yz component as op;4 þ 7O � 1:47 Hz. Similarly, the mode in Fig. 4(e) is termed
the second tilt mode from the dominating yx component and has modal frequency op;5 þ 7O � 1:59 Hz.

The amplitudes of the O-harmonic components in the principal periodic mode shape are listed in Table 2. They are equal
to the modal amplitudes obtained from the Coleman transformation approach shown in Fig. 2 for O ¼ 1:4 rad=s.

3.2. Anisotropic rotor

An anisotropy is applied to the blade stiffnesses as G1 ¼ 1:1Gb and G2 ¼ G3 ¼ 0:95Gb such that the mean stiffness is not
changed. The modal frequencies determined from the Lyapunov–Floquet transformation approach change less than 0.5
percent compared to the isotropic case. Fig. 5(a) shows the amplitudes of the O-harmonic components in the principal
periodic mode shape of the first BW mode. The mode shape now contains several O-harmonics, whereas there are at most
three O-harmonics in the isotropic case. Similar results are obtained for the other asymmetric modes in Figs. 5(b, d, e).

Fig. 5(c) shows that the symmetric mode is not pure, i.e. there are whirling components in the mode shape. The stiffness
anisotropy causes several O-harmonics in the symmetric mode shape for state variables in both the inertial and rotating
Table 2
For the isotropic rotor: modal frequencies and normalized amplitudes obtained from a Fourier transform of the periodic mode shape.

Mode First BW Sym. First FW Second tilt Second yaw

f k (Hz) 0.448 0.746 0.864 1.470 1.590

A0;k (f k) 0.0000 1.0000 0.0000 0.0000 0.0000

ABW;k (f k þO=2p) 1.0000 0.0000 0.1605 0.6895 0.5228

AFW;k (f k �O=2p) 0.0002 0.0000 1.0000 0.6545 0.7748

Ax;k (f k) 0.1898 0.0000 0.3115 0.1310 1.0000

Az;k (f k) 0.3449 0.0000 0.4888 1.0000 0.1181

Amplitudes A0;k , ABW;k , and AFW;k are obtained from y1 and Ax;k and Az;k from yx and yz , respectively. In parentheses are noted the frequencies of the

harmonic components, O=2p ¼ 0:223 Hz.
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frames, unlike the isotropic case involving only one harmonic in the rotor state variables. The symmetric mode has BW
rotor components at even multiples of O above the symmetric rotor harmonic (the difference between the symmetric and
the BW harmonics is an even number) and FW rotor components at even multiples of O below it.
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The asymmetric mode shapes in Figs. 5(a, b, d, e) have BW and FW rotor components next to the dominating inertial
component as in the isotropic case (cf. Eq. (13)). Additionally, the anisotropy creates BW rotor components at odd multiples
of O above the dominating inertial component and FW rotor components at odd multiples of O below it. For all modes the
inertial components appear between the whirling rotor components with an interval of 2O.

To study the effect of the additional harmonic components in the periodic mode shapes of the anisotropic rotor, the
steady-state tilt response yx due to a harmonic excitation on yx is computed for a range of frequencies by a brute force
approach using time integrations until a steady-state is reached for each excitation frequency. Steady state is here defined
as the case where the frequency spectra of the response in two successive time intervals of 64 excitation periods are similar,
with a maximum relative difference of 1 percent between the frequency components that have amplitudes larger than 0.1
percent of the maximum amplitude. These steady states may contain multiple harmonics, and the response is therefore
represented by the rms value taken over the 64 excitation periods.

Fig. 6 shows peaks in the response at the modal frequencies denoted by the solid lines, except for the symmetric mode,
due to the asymmetry of the excitation. The first smaller peak at f 2 � 2O ¼ 0:41 Hz matches the harmonic at 2O below the
dominating harmonic component of yx in the mode shape of the first FW mode in Fig. 5(b). Likewise, the peak at
f 1 þ 2O ¼ 0:89 Hz is 2O above the frequency of the dominating harmonic of yx in the first BW mode shape in Fig. 5(a). The
peaks around the symmetric modal frequency at f 3 �O ¼ 0:53 Hz and f 3 þO ¼ 0:97 Hz correspond respectively to the
harmonics of yx at �O around the dominating rotor harmonic in Fig. 5(c). The two peaks at f 5 � 2O ¼ 1:14 Hz and
f 5 þ 2O ¼ 2:04 Hz correspond respectively to the harmonics of yx at �2O around the dominating harmonic of yx in the
second tilt mode shape in Fig. 5(d). The response has a small peak at the second yaw modal frequency because yx motion is
involved only slightly in this mode, as seen by the amplitude of yx being much smaller than that of yz in the dominating
harmonic in Fig. 5(e). This forced response analysis confirms the validity of predicting important aspects of the response by
using the modal frequencies and periodic mode shapes. The obtained insight about O-harmonics in the periodic mode
shape and their relation to the modal characteristics (symmetric or whirling rotor modes) can be used to understand
frequency spectra and identify modes in measured or simulated time series of design determining loads.

4. Conclusion

In this paper, two methods for modally analyzing structures with bladed rotors are considered: the Coleman
transformation approach and the Lyapunov–Floquet (L–F) transformation approach. The Coleman transformation is a
special case of the L–F transformation for an isotropic rotor. The Coleman approach transforms rotor state variables into the
inertial frame of reference and makes the system equations of structures with an isotropic rotor time-invariant, enabling
eigenvalue analysis. The L–F approach is applicable to any periodic system but introduces an indeterminacy on the system
frequencies and the transformation yielding a time-invariant system. Based on the similarity of the Coleman and the L–F
approaches, the modal frequencies in the L–F approach are chosen such that the periodic mode shapes become as constant
as possible for inertial state variables. In the example with a three-bladed wind turbine with an isotropic rotor the modal
frequencies obtained using both approaches are identical. When introducing a rotor anisotropy to the blade stiffnesses,
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meaningful modal frequencies are still obtained. However, state variables in the periodic mode shape, both in the rotor and
in the inertial frame, now contain multiple harmonics that lead to multiple resonance frequencies for a single mode.
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Appendix A

The equations of motion of a structure with a bladed rotor linearized about a steady state can be written in second-order
form as

MðtÞ €y þ CðtÞ _y þ KðtÞy ¼ 0 (42)

where y contains the generalized coordinates of the system, and the matrices M, C, and K are the periodic mass, gyroscopic/
damping, and stiffness matrices, respectively. For an isotropic rotor, these periodic matrices of the second-order equations
can all be written in a generic form as

GðtÞ ¼

Gb Gbb;1 Gbb;2 � � � Gbb;2 Gbb;1 Gbs;1ðtÞ

Gbb;1 Gb Gbb;1 � � � Gbb;3 Gbb;2 Gbs;2ðtÞ

Gbb;2 Gbb;1 Gb � � � Gbb;4 Gbb;3 Gbs;3ðtÞ

..

. ..
. ..

. . .
. ..

. ..
. ..

.

Gbb;2 Gbb;3 Gbb;4 � � � Gb Gbb;1 Gbs;B�1ðtÞ

Gbb;1 Gbb;2 Gbb;3 � � � Gbb;1 Gb Gbs;BðtÞ

Gsb;1ðtÞ Gsb;2ðtÞ Gsb;3ðtÞ � � � Gsb;B�1 Gsb;B Gs

2
66666666666664

3
77777777777775

(43)

where Gb and Gs are constant matrices describing the internal forces in the individual blades and the support and

Gsb;iðtÞ ¼ Gc
sb cosci þ Gs

sb sinci

Gbs;iðtÞ ¼ Gc
bs cosci þ Gs

bs sinci (44)

where Gs
bs, Gc

bs, Gs
sb, and Gc

sb are constant matrices describing the coupling forces between blades of the rotor and its
support. The constant matrices Gbb;i describe the coupling forces between blades j and jþ i.

A.1. Coleman transformation of first-order state space equations

The Coleman transformation of state variables (3) implies that the generalized coordinates and velocities are
transformed as

y ¼ B2z2 and _y ¼ B2z̃2 (45)

where the Coleman transformation matrix B2 is given by (3) with half sized INb
and INs

corresponding to the number of
generalized coordinates, and not state variables. The vector z̃2 represents the Coleman transformed generalized velocities,
which are related to the time derivatives of the Coleman transformed generalized coordinates as

z̃2 ¼ x̄2z2 þ _z2 (46)

where x̄2 is the constant matrix relating the Coleman transformation matrix and its derivative [23] as

_B2ðtÞ ¼ B2ðtÞx̄2 (47)

Using that €y ¼ B2x̄2z̃2 þ B2
_̃z2 and (46), the Coleman transformation of the second-order equations (42) becomes

MB
_̃z2 þMBx̄2z̃2 þ CBz̃2 þ KBz2 ¼ 0 (48)

where MB ¼ B�1
2 MB2, CB ¼ B�1

2 CB2, and KB ¼ B�1
2 KB2 are Coleman transformed system matrices.

Eqs. (46) and (48) can be rewritten in matrix form as

_z2
_̃z2

( )
¼

�x̄2 I

�M�1
B KB �M�1

B CB � x̄2

" #
z2

z̃2

( )
(49)

where fzT
2; z̃

T
2g contains the multi-blade state variables and original support state variables.
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To use the Coleman transformation given by (3), this multi-blade state vector and the original state vector containing
the general coordinates y and velocities _y must be permuted as

x ¼ Px
y

_y

( )
; z ¼ Px

z2

z̃2

( )
(50)

where the permutation matrix Px orders the state variables in x as given by (2). The Coleman transformed system matrix
(6) thereby becomes

AB ¼ Px

�x̄2 I

�M�1
B KB �M�1

B CB � x̄2

" #
PT

x (51)

where the matrices MB, CB, and KB are time-invariant for isotropic rotors, as seen by derivation of the Coleman
transformation of the generic matrix (43) after substantial algebraic manipulation using the trigonometric addition
formulas and identities for sums of harmonics of evenly spaced angles [16]:

GB ¼ B�1
2 GB2 ¼

GB;0 0 0 0 0 � � � 0 0 0 0

0 GB;1 0 0 0 � � � 0 0 0 Gc
bs

0 0 GB;1 0 0 � � � 0 0 0 Gs
bs

0 0 0 GB;2 0 � � � 0 0 0 0

0 0 0 0 GB;2 � � � 0 0 0 0

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

. ..
.

0 0 0 0 0 � � � GB;B̃ 0 0 0

0 0 0 0 0 � � � 0 GB;B̃ 0 0

0 0 0 0 0 � � � 0 0 GB;B=2 0

0 B
2Gc

sb
B
2Gs

sb 0 0 � � � 0 0 0 Gs

2
66666666666666666666664

3
77777777777777777777775

(52)

where the first B diagonal entries are defined by

GB;i ¼ Gb þ
X̃B
n¼1

2 cosð2pin=BÞGbb;n þ ð�1ÞiGbb;B=2 (53)

with i ¼ 0;1; . . . ; B̃ for B odd and i ¼ 0;1; . . . ; B̃;B=2 for B even.

A.2. Second-order system matrices of wind turbine with three flap-hinged blades

The mass matrix M, gyroscopic/damping matrix C, and stiffness matrix K for the wind turbine with flap-hinged blades
in Fig. 1 are given by

MðtÞ ¼

Jb 0 0 Jb cosc1 �Jb sinc1

0 Jb 0 Jb cosc2 �Jb sinc2

0 0 Jb Jb cosc3 �Jb sinc3

Jb cosc1 Jb cosc2 Jb cosc3 Jx þ
3
2Jb þ J0 0

�Jb sinc1 �Jb sinc2 �Jb sinc3 0 Jz þ
3
2Jb þ J0

2
66666664

3
77777775

(54a)

CðtÞ ¼

c1 0 0 �2OJb sinc1 �2OJb cosc1

0 c2 0 �2OJb sinc2 �2OJb cosc2

0 0 c3 �2OJb sinc3 �2OJb cosc3

0 0 0 cx 3OJb

0 0 0 3OJb cz

2
6666664

3
7777775

(54b)

KðtÞ ¼

G1 þO2Jb 0 0 0 0

0 G2 þO2Jb 0 0 0

0 0 G3 þO2Jb 0 0

O2Jb cosc1 O2Jb cosc2 O2Jb cosc3 Gx 0

�O2Jb sinc1 �O2Jb sinc2 �O2Jb sinc3 0 Gz

2
666666664

3
777777775

(54c)
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where J0 ¼ 3mbL2
s and cj ¼ Ot þ 2pðj� 1Þ=3. The periodic system matrix of the first-order equations (1) can be derived

from

AðtÞ ¼ Px
0 I

�M�1ðtÞKðtÞ �M�1ðtÞCðtÞ

" #
PT

x (55)

Extracting the generic form of these system matrices, the Coleman transformed system matrix of the first-order equations
can be derived from (51) and (52) as

AB ¼

0 1 0 0

�
Gb

Jb
�O2

�
cb

Jb
0 0

0 0 0 1

0 0 �
Gb

Jb
�

3Gb

2J0 þ 2Jx
�O2

�cb
3

2J0 þ 2Jx
þ

1

Jb

� �

0 0 O 0

0 0 0 O

0 0 0 0

0 0
3Gb

2J0 þ 2Jx

3cb

2J0 þ 2Jx

0 0 0 0

0 0 0 0

2
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